
Rail & Wheel Profiles: The Nexus of Wheel/Rail Interaction

Rob Caldwell

National Research Council Canada

Combatting Wear and RCF

- 1. Wheel and rail profiles
- 2. Friction management and lubrication
- 3. Steel metallurgy (hardness, cleanliness)
- Bogies/trucks (soft vs hard suspension, body steered, self-steering)
 - All of them are equally important
 - All of them should be used

Looking Back – Rail Profiles

- Softer rail steels rapid initial wear, plastic flow
- Grinding to remove corrugation, not to attain a specific target profile
- Grinding templates not in use
- No asymmetric profiles = poor steering and high wear
- AREA / AREMA recommended rail profiles

Looking Back – Wheel Profiles

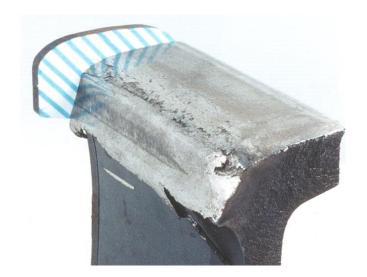
- Worn wheel limits did not include hollowing
- Interchange freight profile was prescribed
- Limited choice for intercity service
- More choice for transit how to choose?

Looking Back – Friction Management

- Gauge face lubrication spotty
 - Equipment not sophisticated
 - Output not well-controlled
 - Choice of product at the discretion of local people
- TOR-FM not invented
 - Positive, neutral, negative friction characteristic?

Past, Present and Future

What happens if I choose incompatible profiles?



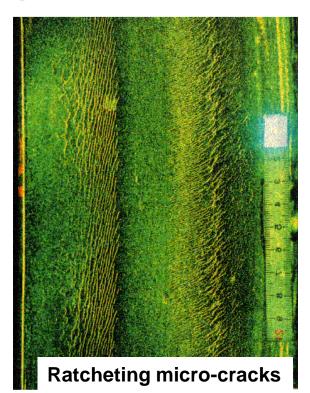
Wrong Profile Combination?

Wrong combination of W/R profiles can lead to high flange and gauge face wear

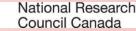


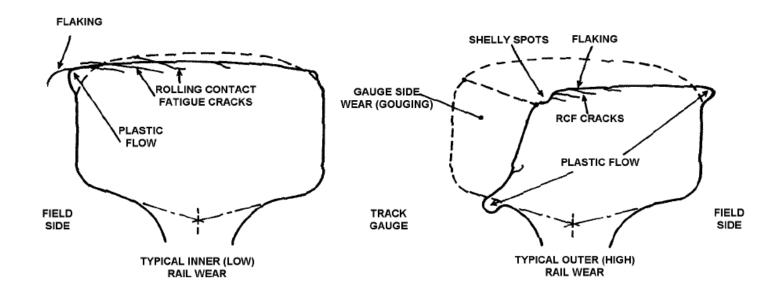
Wrong Profile Combination?

Wrong combination of W/R profiles can lead to rail (sub)surface damage

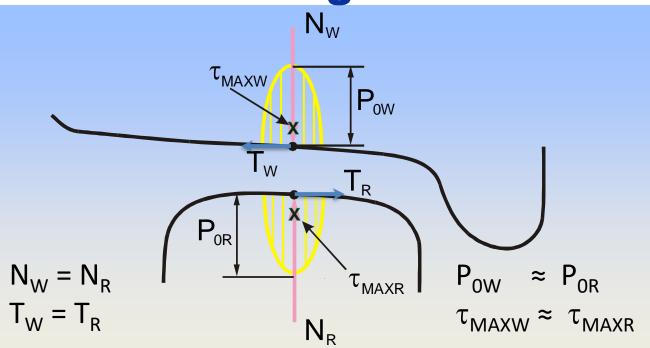


Wrong Profile Combination?


Wrong combination of W/R profiles can lead to wheel surface damage



Wear and RCF Damage



Why Manage W/R Profiles?

- Each wheel rail system is unique due to its traffic mix, prevailing bogie suspension and distribution of track curvature – one combination of wheel and rail profiles does not fit all systems
- The choice of available new wheel and rail profiles can reduce or hasten wear, RCF and development of corrugations
- Optimizing and maintaining wheel/rail profiles by periodic re-profiling extends life, reduces vehicle and track maintenance and maintains vehicle stability

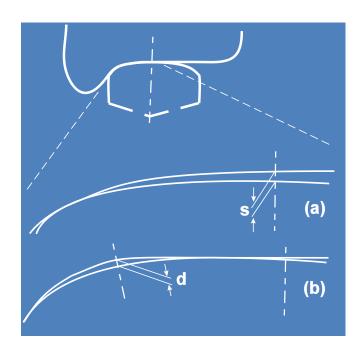
W/R Contact Points are Mirror **Images**

The Impact of Profiles

- Fatigue (of wheels and rails)
 - rail: 2.2 to 4 million cycles/ 100 MGT
 - wheel: 56 million cycles / 100,000 miles
 - controlled by grinding (rails), truing (wheels),
 milling (both)
- Wear (of wheels and rails)
 - also lubrication
- Stability

Freight vs High Speed

- Freight trains
 - heavy axle loads (35 kip)
 - slow (30-60 mph)
 - runs under-balance in mixed traffic system
 - relatively flexible bogies
- High Speed
 - light axle loads (25/16 kip)
 - high speed (110 to 150 mph)
 - runs over-balance in mixed traffic operations
 - longer wheelbase, light and stiff bogies


Wheel/Rail Profile Design (the 5 C's)

- Conformality
- Contact Stress
- Conicity
- Curving
- Creepage

1. Conformality

closely conformal

0.1 mm (0.004") or less

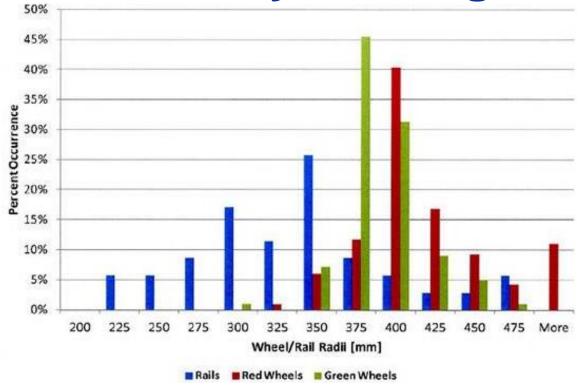
conformal

0.1 mm to 0.4mm

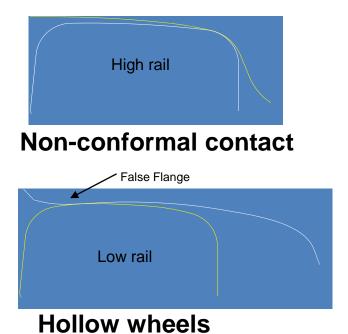
(0.004" to 0.016")

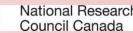
non-conformal

0.4 mm (0.016") or larger

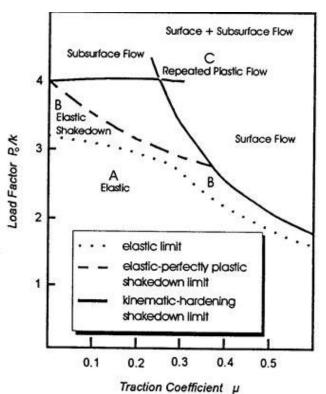


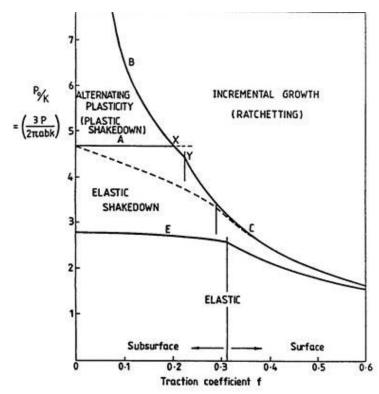
Conformality on Tangents



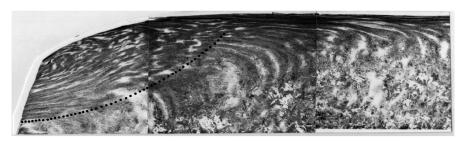

2. Contact Stress

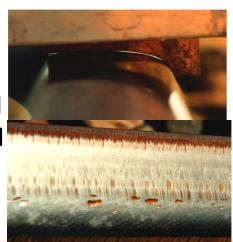
- Depends on
 - wheel radius
 - wheel load
 - wheel/rail profile
 - friction coefficient





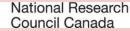
Shakedown

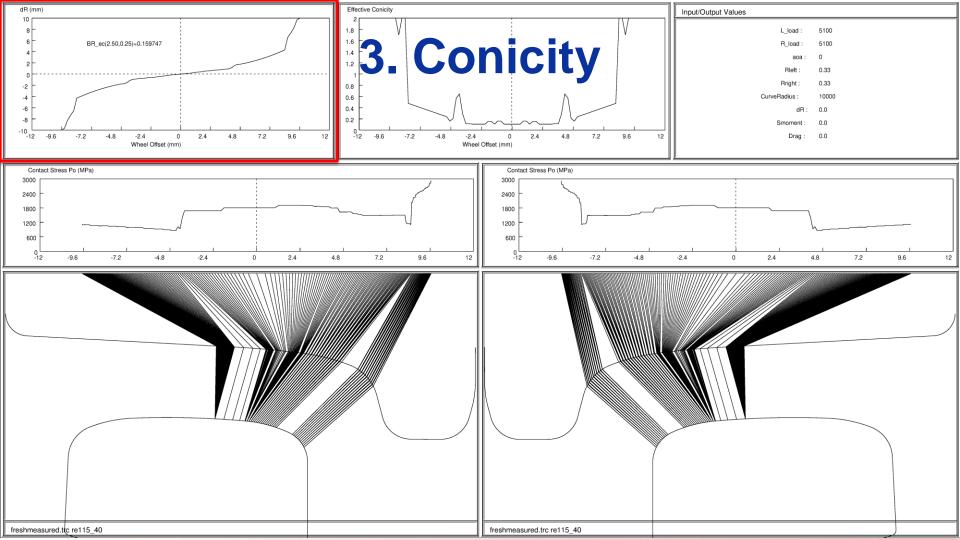


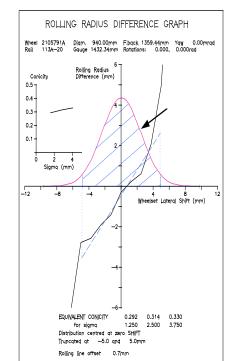


Excessive Contact Stress

Gage corner collapse



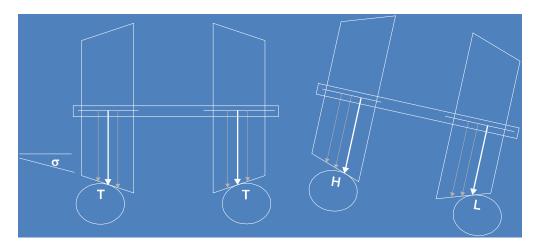

Concave low rail



Conicity – the general case

British Rail derivation

$$\lambda_e = \frac{1}{2} \int \frac{N(y) (r_R - r_L)}{y} dy$$



4. Wheelset Curving

Rolling radius difference achieved by conical wheels in curves Also by using asymmetric rail profiles

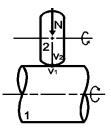
T: tangent

H: high rail L: low rail

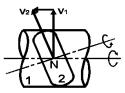
Rolling Radius Difference

- not enough (insufficient):
 - poor steering, flanging, wear, noise
 - e.g. new wheel on worn high rail
- just enough:
 - perfect steering, free rolling
 - e.g. asymmetric grinding + steered bogies
- too much (excessive):
 - mild curves to overcome suspension resistance
 - yields longitudinal creep forces

Rolling Radius Difference (△R)

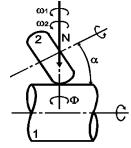

		Curvature	
Curve R [m]	Curve R [ft]	(degree)	dR [mm]
1750	5741	1	0.36
875	2871	2	0.73
580	1903	3	1.10
440	1444	4	1.45
350	1148	5	1.82
290	951	6	2.20
250	820	7	2.55
220	722	8	2.90
195	640	9	3.27
175	574	10	3.64
150	492	12	4.25

Wheel radius = 14.5" (0.3683 m) Gauge = (1680+50)mm = 68-1/8"



5. Creepage (slip)

$$\Psi_x = \frac{\underline{v}_1 - \underline{v}_2}{\frac{1}{2}(\underline{v}_1 + \underline{v}_2)}$$


longitudinal

$$\Psi_y = \frac{\underline{v}_1 - \underline{v}_2}{\frac{1}{2}(\underline{v}_1 + \underline{v}_2)}$$

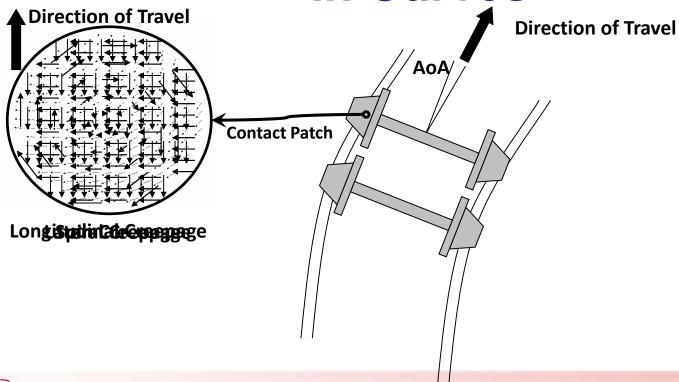
lateral

spin

$$\Phi = \frac{\omega_1 - \omega_2}{\frac{1}{2}(\underline{v}_1 + \underline{v}_2)}$$

$$\omega_1 = 0$$

$$\omega_2 = \frac{V_2}{r} \cos \alpha$$


Creepage: impacts:

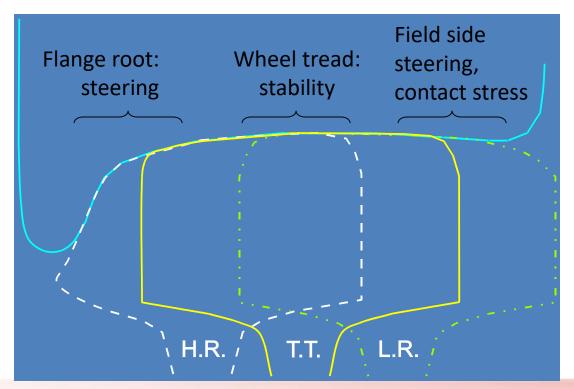
- •wear
- •fatigue
- L/V forces
- traction/adhesion

Lateral Forces (Creep) in Curves

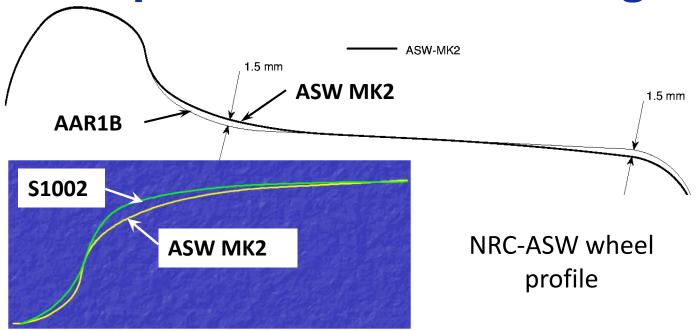
Design Objectives

- High Speed
 - stability
 - noise
 - wear
 - corrugation
 - fatigue

- Heavy Haul
 - contact fatigue
 - (curve) wear
 - stability
 - corrugation
 - noise


Compromise design via pummelling

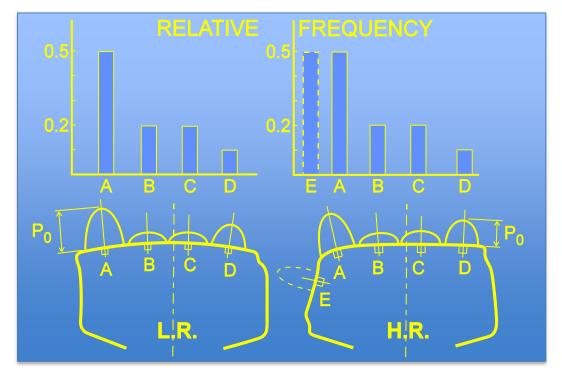
Wheel Profile Design



Example: ASW Profile Designs

"High conicity" Anti-Shelling Wheel (ASW) profile designs reduced RCF shelling by 18 – 60% on various railroads

Example: Acela Wheel Profile



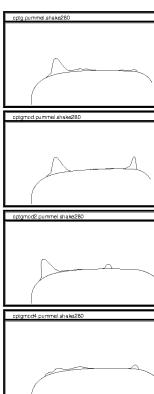
Rail Profile Design - Pummelling

Pummelling Analysis

Simulation

- measured wheel profiles
- vehicle characteristics (stiffness, wheelbase etc.)
- rail hardness (for damage evaluation)
- rail curvature, super-elevation, dynamic rail rotation etc.

Evaluate distributions of


- contact stress
- steering moments
- effective conicity

Pummelling Tool

Looking Ahead...

- Smarter profile design tools
 - Define an objective function, tolerance, number of iterations permitted
 - Genetic algorithms
- Steels with increased damage/wear resistance
- Increased use of
 - flexible (yaw) trucks on freight
 - Steered trucks on transit
- Widespread use of friction management
- Route-specific rail profiles

Questions?

